Stochastic Integrals and Evolution Equations with Gaussian Random Fields
نویسندگان
چکیده
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملnumerical solution of second-order stochastic dierential equations with gaussian random parameters
in this paper, we present the numerical solution of ordinary dierential equations (or sdes), from each order especially second-order with time-varying and gaussian random coecients. we indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multi- plicative noises). making stochastic dierent...
متن کاملConditionally Gaussian stochastic integrals
We derive conditional Gaussian type identities of the form E [ exp ( i ∫ T 0 utdBt ) ∣∣∣∣ ∫ T 0 |ut|dt ] = exp ( − 2 ∫ T 0 |ut|dt ) , for Brownian stochastic integrals, under conditions on the process (ut)t∈[0,T ] specified using the Malliavin calculus. This applies in particular to the quadratic Brownian integral ∫ t 0 ABsdBs under the matrix condition A †A2 = 0, using a characterization of Yo...
متن کاملIsotropic Gaussian Random Fields on the Sphere: Regularity, Fast Simulation and Stochastic Partial Differential Equations
Isotropic Gaussian random fields on the sphere are characterized by Karhunen–Loève expansions with respect to the spherical harmonic functions and the angular power spectrum. The smoothness of the covariance is connected to the decay of the angular power spectrum and the relation to sample Hölder continuity and sample differentiability of the random fields is discussed. Rates of convergence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Optimization
سال: 2008
ISSN: 0095-4616,1432-0606
DOI: 10.1007/s00245-008-9051-z